
ELSEVIER Plh S0032-3861(97)00091-8 

Polymer Vol. 38 No. 21, pp. 5431-5439, 1997 
© 1997 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0032-3861/97/$17.00 + 0.00 

Statistical crosslinking of heterochains 

H idetaka Tobita* 
School of Chemistry, University of Sydney, New South Wales 2006, Australia 

and Shiping Zhu 
Department of Chemical Engineering and Department of Materials Science and Engineering, 
McMaster University, Hamilton, Ontario, L8S 4L 7 Canada 
(Received 30 September 1996; revised 13 December 1996) 

We extend the Flory/Stockmayer gelation theory to systems consisting of N types of polymer chain in which 
the transition probabilities that a crosslink point on a chain of type i is connected to a chain of type j is 
explicitly given by Pij. A general formula for the weight-average molecular weight is developed. Gelation is 
predicted to occur when the largest eigenvalue of the transition matrix Q defined in the text reaches unity. In 
addition to the N-component systems, the present theory can be used to elucidate the non-random 
crosslinking reactions where the expected crosslinking density of the primary chains is different due to the 
residence time distribution or the history-dependent crosslinking reactions. For the prediction of the full 
molecular weight distribution, a Monte Carlo simulation method is used to illustrate the resulting 
distribution profiles. © 1997 Elsevier Science Ltd. 
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INTRODUCTION 

More than 50 years have passed since Flory 1 and 
Stockmayer 2'3 proposed a comprehensive theory for 
the random crosslinking of polymer chains. In the 
meantime, various types of different mathematical 
languages for polymeric network formation have been 
proposed 4. However, a general theory that is capable of 
applying to a system with N types of different polymer 
chain has never been developed. In the present paper, 
we propose a theory for the statistical crosslinking 
of heterochains in which the chain connection rule is 
explicitly given by the transition probabilities that a 
crosslink point on a chain of type i is connected to a 
chain of type j, pq. The assumption of ring-free cross- 
linking reactions used in the Flory-Stockmayer model 1-3 
is retained in the present theory. 

For binary systems (N = 2), Stockmayer 5'6 considered 
the condensation of polymer chains in which the 
functional group of type A reacts with type B, whose 
reaction system consists of .41, A 2 , . . .  ,Ai , . . .  moles of 
the type A chains (the subscripts can be considered as 
indicating the chain length) and B1, B2,. . . ,  Bj . . .  moles 
of the type B chains. Explicitly, his analytical solution 
corresponds to the cases with P12 =P21 = 1, i.e. the 
crosslinking reactions occur solely with heterochains. 
However, consider an imaginary two-stage process in 
which the crosslinking among the same type of chains is 
conducted first, and then crosslink different types of 
chains. In principle, this two-stage process can give the 
same resulting molecular weight distribution as for any 

*To whom correspondence should be addressed. Present address: 
Department of Materials Science and Engineering, Fukui University, 
3-9-1 Bunkyo, Fukui 910, Japan 

combination of pq values, even though it lacks the 
dynamic picture of gel molecule development. Therefore, 

56 although Stockmayer' did not mention such a two- 
stage process, it can be considered that Stockmayer gave 
a general solution for N = 2 as an implicit form some 40 
years ago. Other mathematical languages 7'8 can be used 
for this problem, and the effect of the unequal reactivity 
of functional groups was also considered 9. Quite recently, 

10 11 Zhu and co-workers ' considered the case where two 
types of polymer chain are crosslinked via a free-radical 
polymer grafting with an arbitrary set ofpll,  P22, P12 and 
P21. In this work, we present a comprehensive theory that 
enables one to deal with a system with any number of N. 
A general criterion for the onset of gelation is given. 

In practice, the combination of the chemical types of 
miscible polymer chains in a molten state is limited; 
however, by employing the solution process 12, a larger 
number of different types of polymer molecule could be 
dissolved in common solvents to form a homogeneous 
mixture. Furthermore, it is worth noting here that the 
present theory can be applied also for the cases where 
the chemical type of chain is essentially the same, but the 
chain connection rule is not the same for all chains, such 
as due to the residence time distribution. The coexistence 
of polymer chains with different residence times could 
lead to the formation of polymer chains with different 
levels of crosslinking densities, even under the random 
crosslinking reactions. If we consider the polymer chains 
with different residence times as different types of chain, 
the problem reduces to the statistical crosslinking of 
heterochains. 

In the free-radical polymer grafting in which rapidly 
decomposing peroxides are used, the peroxide molecules 
diffuse into the polymer matrix and they decompose at 
the same time, probably even faster. Such localized 
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variations in peroxide concentration 13 may also lead to 
formation of the crosslinking density distribution among 
primary chains. 

The heterochain crosslinking model could be used 
also for the history-dependent crosslinking reactions, 
such as free-radical crosslinking copolymerizations of 
vinyl and divinyl monomers. In such types of reaction, 
each primary polymer molecule formed at a different time 
experiences a different history of crosslinking reactions, 
resulting in formation of a crosslinking density distribu- 
tion among primary polymer molecules 14~19. Therefore, 
if we consider the primary chains formed at different 
birth times as different types of polymer chain, the free- 
radical copolymerization could be modelled as the 
statistical crosslinking of heterochains, with N ~ ~ .  

Our theory is based on the random sampling tech- 
nique 17-23 in which polymer molecules are randomly 
sampled from an infinite number of polymeric species 
in the reaction mixture. To illustrate the technique, 
consider the classical example of the random cross- 
linking of homochains. Let the weight-average chain 
length of the primary polymer molecules be Pwp and the 
crosslinking density be p. When Pwp >> 1, the weight- 
average chain length (degree of polymerization) for the 
present case is given by 1 3 

Pw - Pwp (1) 
1 - PPwp 

We derive equation (1) in the framework of the 
random sampling technique 22'23. The weight-average 
chain length is the expected chain length when a polymer 
molecule is sampled on a weight basis. The sampling on a 
weight basis can be made by randomly choosing one unit 
from all of the units bound to polymer molecules in the 
reaction mixture• The idea that the weight-average chain 
length can be obtained by seeking the expected size of a 
polymer molecule when one unit is chosen randomly, 
without the full knowledge of the distribution function, 
is not new at all. The idea itself could, probably, be 
traced back to the person who first thought of the 
weight-average of a distribution. In the polymer field, 
Flory's criterion for the onset of gelation I in which 
gelation occurs when the weight-average chain length 
goes to infinity stemmed from this idea. Further, the 
cascade theory proposed by Gordon 7 and the recursive 
method developed by Macosko and Miller 8 also employ 
this idea to obtain the weight-average chain length. 
However, the derivation of equation (1) can be simplified 
by considering the primary chain as a basic unit for the 
molecular architecture, as shown below. 

Suppose we have randomly selected one monomeric 
unit, as shown in Figure 1. Because the selection is made 
on a weight basis, the primary chain that involves this 
particular unit follows the weight fraction distribution of 
the primary polymer molecules, and the expected chain 
length is Pwp. Let this primary polymer molecule be the 
zeroth generation (gen. 0 shown in Figure 1 ). The expected 
number of crosslink points on this primary chain is PPwp. 
From the point of view of the connected primary polymer 
molecules in the first generation, any unit within the chain 
can be connected with equal probability, which means that 
the primary chains that belong to the first generation are 
also selected on a weight basis. Therefore, the expected 
weight (number of monomeric units) of the primary 
chains that belong to the first generation is p(Pwp) 2. 

randomly selected unit 

~-~ge-~i_ _.~ ~ I l l l l l l l l l l l ~ l ~  expectation= P,,,p 

~ -  - - - 2 f ~ - ~ / ~ - - - ~ . ~ - -  ] no. of primary chains 

gen. 2 ~ l [ J  '~ I ] I -- ' ! j 
no. of primary chains 

Figure l Schematic drawing for the derivation of the weight-average 
chain length of the crosslinked polymer system 

:-,4-----IP~ " 
!gen. 0 ~ ~ i 
• i i 

gen. 1 i 
, ~  r ,  

gen. 2 

gen. 3 

Figure 2 Diagram that shows the calculation method of the expected 
weight of polymer chains that belong to each generation for the random 
crosslinking of homochains 

Similarly, the expected number of crosslink points 
connected to the second generation is given by (pPwp) 2. 
Note that, strictly speaking, the expected number of 
crosslink points is p2pwp(P,, p - 1), because one unit on 
each primary chain in the first generation is used to 
connect with the zeroth generation z2'23. With this strict 
treatment, one obtains the exact solution for the present 
problem; Pw = Pwp( 1 + p)/{1 - P(Pwp U 1)}. However, 
in the present article, we assume that Pwp >> 1, and use 
Pwp instead of (/Swp - 1), including the derivation for the 
N-component systems. 

Therefore, the expected weight of the primary chains 
that belong to the second generation is given by p2 (pwp)3. 
Figure 2 shows the diagram for calculating the expected 
weight of each generation. In the figure, the product of 
the quantities contained within the line with arrows at 
both ends ( ~ )  indicates the expected weight of the 
polymers that belong to the given generation, which 
shows that the expected weight of primary chains that 
belong to the nth generation is given by ewp(pPwp) n. 
Therefore, the total expected weight, which is the weight- 
average chain length, is given by the following infinite 
series: 

n=o - PPwp 
(2) 

The result obtained is exactly the same as equation (1). 
The same type of argument was used by Gordon 
and Ross-Murphy 24 to derive the weight-average chain 
length of a random f-functional polycondensate. We 
extend the present method to the systems with N types of 
polymer chain. Further, we calculate the full molecular 
weight distribution profiles by combining the present 
technique with the Monte Carlo method. 
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WEIGHT AVERAGE MOLECULAR WEIGHT 

Consider a polymer mixture that consists of N types of 
chain whose weight fractions are w i ( i  = 1,2, . . . ,  N) and 
weight-average chain lengths are Pwp, i. Let the transition 
probability that a crosslink point on a chain of type i is 
connected to a chain o f type j  bepu, and the crosslinking 
density of chains of type i be Pv The following relation- 
ships hold for the fractions: 

N 

E w i = l  (3) 
i=1 

N 

E P i j = l  (4) 
j = [  

The average crosslinking density of the whole system is 
given by 

N 

= E w,p, (5) 
i=1 

The weight-average chain length of the whole primary 
polymer molecules,/Swp is given by 

N 

Pwp = E wi['wP, i (6) 
i=1 

Because the total number of connections from the 
chains of type i to the chains of type j must be equal to 
the connection from j to i, the following relationship 
between the type i and j chains holds: 

w i P i P i j  = w j p j p j i  (7) 

For simplicity, we elucidate the technique by using a 
binary system first. Suppose the primary chain we have 
randomly selected on a weight basis is type 1. The prob- 
ability of making such a selection is Wl. By referring to 
Figure 3, we can derive the weight-average chain length 
in a straightforward manner. The expected chain length 
of this primary chain is Pwp, 1. The expected number of 
crosslink points on this chain is Pwp, lPl. Within these 
crosslink points, Pwp, lPlP_11 of them are connected to 
chains of type 1, while Pwp, lPlPl2 crosslink points are 
connected to chains of type 2. The expected sizes of each 
connected chain are Pwp,1 and Pwp,2, respectively. By 

-Pwp,1 

igen. 0:: 
: i 

gen, 1 

i . ,  
: i / P l  ~1 

i / w p ' t } N ~ P l 2  

Pl t:t 1 ' - -  w2 

, _ :: /02 t~l 

P..2 ii " , , ~  _ 

:: Pwp,21 

{ - XPY42 : / P~p,I 

wp,21 ~p,2 

i ,,4 < .  
: -- i / P 2  P21 
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• .~ i i Q~,,2 

E 

gen. 2 ~ : 

.~--. 
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"x 

/ 
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/ 
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Figure 4 Diagram for calculating the expected weight of each 
generation for the statistical crosslinking of a binary system, given 
that the initially selected unit  belongs to a polymer chain of type l 

repeating the similar procedure as shown in Figure 3, the 
expected weight of a polymer molecule, given that the 
type 1 chain is selected initially,/sw, 1 is given by 

ew, 1 = Pwp, 1 4- Pwp, IPl (Pllewp, 1 4- Pl2Pwp, 2) 

+ Pwp, lP~{P~rPwp, lP~(PIlPwp, 1 + Pl2Pwp,2) 

4- Pl2Pwp,2P2(P21Pwp, l 4- P22Pwp, 2) } 4- . ' .  (8) 

Figure 4 shows the diagram for the present calculation. 
In the figure, the sum of the products along the arrows 
within a given generation gives the expected weight of the 
polymer chains that belong to the generation. 

When the initially selected unit belongs to a chain of type 
2, a similar diagram can be prepared in a straightforward 
manner. The expected weight of a polymer molecule, given 

randomly selected unit 
! 

I I ~ P -  expectation = -Pwp, l 

I I I I I I I I I I 1 ~  -Pwp, i pl (pllP2~,p,i +/~2Pwp,2 ) 

T 
no. of primary chains 

F--b- no. of primary chains 

Figure 3 Schematic drawing for the derivation of the weight-average chain length for the statistical crosslinking of chains of types 1 and 2, given that 
the initially selected unit belongs to a polymer chain of type l 
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that the type 2 chain is selected initially,/Sw, 2 is given by 

Pw,2 = ewp,2 q- ewp, ZP2(P21 ewp, 1 q- P22Pwp,2) 

+ Pwp,2P2{P21Pwp, IPl (PllPwp, 1 +Pl2Pwp,2) 

q-pz2Pwp,2P2(P21Pwp, 1 q'-pz2Pwp,2)} + ' "  (9) 

In brief, the expected number of primary chains in the 
nth generation connected from the chains of type i is 
given by the product of Pi and the weight of type i chains 
in the ( n -  1)th generation. The expected weight of 
polymer connected from such a crosslink point is given 
by ~]2=lDijewp,j. Therefore, the total weight of the 
primary chains that belong to the nth generation can 
be given by first-order Markov chain statistics. 

The total expected weight, which is the weight-average 
chain length of the whole raction mixture, Pw is given by 

fiw = wlfiw,1 + w2Pw,2 = Z W p Q  "1 (10) 
n=0 

where 

Wp = (WlPwp, 1, W2Pwp,2) (11) 

(12) o(ql 
q21 q22 P2P21ewp, 1 P2P22Pwp,2 ] 

1 = (13) 
1 

When the molecular weights of a monomeric unit in 
chains of type 1 and 2 are different, the weight-average 
chain length Pw cannot be connected with the weight- 
average molecular weight ~r w directly. In the present 
method, we can account for such differences by changing 
the expected number of monomeric units in each 
generation to the molecular weights in a straightforward 
manner. For example, the expected molecular weights 
of a polymer molecule, given that the type 1 chain is 
selected initially, Mw, l is given by 

i('Iw, 1 = Pwp, 1 M1 + .Pwp, 1Pl (Pl 1Pwp, 1Ml + P12Pwp, 2M2 ) 

+/Swp, lPl {ill 1Pwp, lPl (Pl 1Pwp, 1MI + Pl2Pwp,2M2) 

+ Pl2Pwp,2P2(P21Pwp, IM1 + P22Pwp,2M2) } + . . .  
(14) 

where M1 and M2 are the molecular weights of the 
monomeric unit of chains of types 1 and 2, respectively. 

Therefore, the weight-average molecular weight, Mw, 
is given in a matrix form as follows: 

o o  

Mw : w, ef4w,, + w21fflw,2 = Z W p Q  "M1 (15) 
n=O 

where U is a diagonal matrix defined by 

M = ( O 1  M20 ) (16) 

For a system with N types of chain, the expected 
weight (number of monomeric units) of primary chains 
that belong to the nth generation can be calculated 
similarly with that for a binary system: (1) the expected 
number of primary chains in the nth generation 

connected from the chains of type i is given by the 
product ofp~ and the total number ofmonomeric units of 
type i chains in the ( n -  1)th generation, and (2) the 
expected weight of polymer connected from such a 
crosslink point is given by p, jv= lPijPwp,j. The product of 
the quantity in items (1) and (2) gives the expected weight 
of the primary chains in the nth generation connected 
from the chains of type i. The total expected weight of 
primary chains in the nth generation is given by summing 
up for all i values. Therefore, by using the row vector, 
Wp = (wiewp ,i), the square matrix, Q = (qij) = 
(piPuPwp,j), and the column vector, 1 = (1), the weight- 
average chain length for an N-component system is given 
by: 

o~  

Pw = Z W p Q  "1 (17) 
n=0 

Similarly, the weight-average molecular weight is given 
by 

o~  

/Qw = Z W p Q  "M1 (18) 
n=O 

where M is the diagonal matrix whose elements are 
mii = M i. 

Equation (17) or (18) shows that the weight-average 
chain length diverges to infinity when the largest 
eigenvalue of Q reaches unity. Obviously, for a single- 
component system, equation (17) reduces to the Flory- 
Stockmayer equation given by equation (1), and the 
gelation is predicted to occur at  pewp = 1. 

As a special case, if pi['wpj becomes unity for all pairs 
of i and j values at the same time, the transition matrix 
becomes stochastic whose largest eigenvalue of Q is unity. 
Therefore, under this special condition, gelation occurs 
when  piewp,j = 1 irrespective of any chain connection 
rule, pq. Such conditions may be considered a 'universal' 
gelation point. 

On the other hand, when the probability that a 
crosslink point on a chain of type i connects with a 
chain of typej is equal to the weight fraction of chains j, 
wj, the discrimination of the types of the chains becomes 
just nominal, and the problem reduces to the random 
crosslinking of a single type of chain, i.e. the Flory- 
Stockmayer theory should be valid for this special case. 
This situation (pq = wj) can be rationalized by using 
equation (17) as follows. On the basis of equation (7), 
Pi = P i for the present case. In other words, the expected 
crosshnking density is the same for all types of chain. 
The elements of the transition matrix Q for this case is 
given by 

qij = pWjfiwp,j (for Pij = Wj) (19) 

Therefore, the maximum eigenvalue of Q is given by 

N 
• "~max = P Z wjewp,j = pewp ( for  Pij = wj) (20) 

j= l  

Equation (20) shows that gelation occurs when pPwp = 1, 
which agrees with the Flory-Stockmayer theory 1-3. 

Binary systems (N = 2) 
Here, we show the solution for binary systems, which 

would be of practical interest in polymer modifications. 
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Figure 5 Gel point for the binary systems. When the system reaches 
the point on the curve, gelation is predicted to occur, where Pl/Sp, ] 
and p2P~p, 2 mean the number of crosslink points per primary chain on 
the weight-average basis for chains of types 1 and 2, respectively 

For a binary system, the largest eigenvalue is given by 

Amax ~- ~ PlPwp, lPll + P2Pwp,2P22 

= } + V/(pl-Pwp, lpll - p2Pwp, Zp22) + 4plp2[~wp, IPwp,2p12p21 

(21) 

Equation (21) shows that Area x is determined only by 
PlPwp 1, p2Pwp 2, and the transition probabilities, PU" 
The values o~f ' plPwp 2 and P2Pwp 1 are not involved. 
Furthermore, under 'conditions Pl/swp, 1 = p2Pwp,2 = 1 
the value of  )~max is always unity irrespective of  the 
chain connection rule, pq values. 

Figure 5 shows the combination of  (plPwp, 1, p2Pwp,2) 
in which gelation occurs for the binary systems. The 
point (PlPwp, l,P2Pwp,2) = (1, 1) shows the 'universal' 
gelation point in which gelation occurs irrespective of  the 
p~j values. When Pn = P22 = 0.1, the crosslinking reac- 
tions tend to occur between different types of  chain. In 
such a case, if pl/Swp, l becomes smaller, the value of  
P2Pwp,2 at the gel point must become significantly larger 
to compensate for a smaller  PlPwp, 1 value. 

Whenpl  I = 0.1 andp22 = 0.9, the chains of type 2 tend 
to play a dominant role to form crosslinked polymers, and 
the value of  p2Pwp,2 needs to be close to unity at the gel 
point. 

From equation (17), a general solution of  the weight- 
average chain length for a binary system is given by: 

ew ~-- Pwp -b wl ewp, 1(q12 -- q22) q- w2ewp,2(q21 -- qll) 
(1 - q11)(1 - q22) - q12q21 

(22) 

Incidentally, when crosslinking occurs only with different 
types of chain as originally considered by Stockmayer 5'6, 
i.e. P12 = P21 = 1, equation (22) reduces to 

/3whetero = Wl-Pwp, 1 + w2ewp,2 + (WlPl + w2P2)Pwp, 1Pwp,2 

1 - plP2ewp, lPwp,2 

(23) 

In this case, from equations (3) and (7), it is straight- 
forward to show that wi = P2/(Pl +P2) and w2 = 

pl/(Pl  + P2), and equation (23) can be further modified 
to 

•hetero(1)p2Pwp, l+PlPwp,2+2plP2Pwp, lPwp,2 
w = ~ 1 - -  plP2Pwp, lPwp,2 

(24) 

Equation (24) agrees with the solution obtained by 
Stockmayer 6 with Pwp, 1, Pwp,2 >> 1. 

Free-radical polymer grafting 
We consider the polymer grafting of two different 

polymer chains via free-radical mechanisms. This 
problem was investigated earlier l°A1 by using the 
method of  moments. Let the fraction of radical genera- 
tion rate on chains of type i be gi (i.e. the radical 
generation rate on type i chains is given by givR, where UR 
is the radical generation rate on all types of  chains), and 
the bimolecular termination constant between polymer 
radicals of  the types i and j be kij. Note that k12 = k21, 
because both termination rate constants describe the 
same type of  termination reactions. We introduce the 
following reactivity ratiosl°: 

r I = k l t /k l2  (25) 

r 2 = k22/k12 (26) 

The transition probabilities for the present case are 
given by 

r1¢7 
- -  • • ( 2 7 )  

Pll r161 + 62 

61 
Pl2 - (28) 

r ¢T + 61 

r26  
P22 - -  - -  (29) 

r26~ -I- 057 

¢7 
P21 - (30) 

r26~ + 67 

where ¢7 and 6~ are the mole fractions of the polymer 
radicals of  types 1 and 2, respectively. 

By application of  the stationary-state hypothesis for 
the concentration of  polymer radicals, one obtains: 

67 (gl -- g2) q- 
6" (31) 2 2rig2 

where 

= w/(gl - g2) 2 -k- 4qr2glg2 

Therefore, equations (27)-(30) reduce to 

1 + ( - 2g2 

292 
P12 -- 1 + ~  

2qr2g2 
P22 = 2rlr2g 2 + 1 + ~ -  2g 2 

1 + ~ - 2g2 
Pzl = 2rlr2g2 + 1 + ~ -  2g 2 

(32) 

(33) 

(34) 

(35) 

(36) 

POLYMER Volume 38 Number 21 1997 5435 



Statistical cross/inking of heterochains. H. Tobita and S. Zhu 

It is worth noting here that all transition probabilities 
involve the reactivity ratios, r I and r 2, as the product 
form, rlr2, not separately. In other words, the chain 
connection rule is determined only by the magnitude of 
r]r 2. Because Wp has no relation with the reactivity 
ratios, the weight-average chain length is governed only 
by the product, r I r2, not by the individual terms o fq  and 
r2, as originally reported 1°. 

By substituting equations (33)-(36) into the general 
solution for the binary system, equation (22), one obtains 
the analytical solution for the present case. As a special 
case, when rl r2 = 1, Pw is given by 

= wlg2) ewp, 1Pwp, 2/(Wl w2) Pw Pw - p(w2gl - 2 - - 

1 - p(gZPwp, l/Wl + ~Pwp,2/w2) 

(for rlr 2 = 1) (37) 

Equation (37) agrees with the earlier derivation by using 
10 the method of moments , and it reduces to equation (1) 

when gl = Wl, i.e. the radicals are generated equally for 
all units irrespective of the chain types. 

The validity of all analytical equations derived in refs. 
10 and 11 has been reconfirmed by the present general 
solution given by equation (22). 

Systems with crosslinking density distribution 
As mentioned in the Introduction, the solution for the 

present model equations (17) and (18), could be applied 
for the cases where the chemical type of chain is 
essentially the same but the chain connection rule is 
not the same for all chains, such as due to the residence 
time distribution or the history-dependent crosslinking 
reactions. For example, in a random crosslinking 
reaction, if the residence time distribution is significant, 
some polymer chains would possess larger crosslinking 
density than the others. In the reactive extrusion of 
polymers by using peroxides, a similar situation could be 
caused if the rapidly decomposing peroxide molecules 
cannot be mixed into the polymer melt within a very 
short time 13, even when the variance of the residence time 
distribution is small. As the simplest model for such a 
process, consider a random crosslinking reaction oper- 
ated under the following two-stage process: (1) we 
crosslink polymer chains up to a level of crosslinking 
density, pc`, then additional linear polymer chains, which 
are identical with the initial material for stage 1, are blended 
with the weight fraction w2, and (2) we introduce additional 
crosslinking density, p~, to the whole reaction system. This 
type of process is not simply a model for the systems with 
the residence time distribution, but it was actually used to 
control the molecular weight distribution (MWD) of the 
product polymers 25'26. 

In the present case, Pl = Pc̀  + PO, P2 = Pa and Pw?, 1 = 
Pwp,2 = Pwp. Further, the transition probabilities, pq are 
given by 

PH - pc` + wlP3 (38) 
Pc̀  + P/3 

P I 2 -  w 2 p ~  (39) 
Pc, + P3 

P21 = Wl (40) 

P22 = W2 (41) 

Therefore, the transition matrix Q is given by 

Q= w p \  Wlp3 W2,03J 
(42) 

From equation (22), Pw is given by 

Pw _ 1 - w2paPwp (43) 
Pwp I -- (Pa + P3)Pwp + wzpapfp2,p 

On the other hand, suppose we do not know the existence 
of the residence time distribution. In such a situation, we 
would use equation (1). Because the average crosslinking 
density of the whole reaction mixture is p = w 1 p~ + p~, we 
would estimate the weight-average chain length, pest as 
follows: 

pest 1 
W 

P~-p - 1 - (wlp,~ + P~)Pwp (44) 

The ratio P ~ t / P  w is, therefore, given by 

p e s t  

w 1 - -  (Pa + P3)Pwp + w2PaP3pw2p 
2 - 2 < 1  

1 - (p~ + P4)Pwp + w2P~P~Pw2p + Wl w2pc`Pwp Pw 

(45) 

Equation (45) shows that if we apply the Flory- 
Stockmayer equation to the present reaction system with 
non-random distribution of crosslink points, we would 
underestimate the weight-average chain length for a 
given (average) crosslinking density value, or we would 
overestimate the average crosslinking density level based 
on the measurement of Pw values. 

The same argument holds also for free-radical copolym- 
erization of vinyl/divinyl monomers. In this case, the 
expected crosslinking density of the primary chains are 
different, depending on the birth time 14q9. (Note that the 
first-shell substitution effect z7 and the reactivity ratios of 
comonomers are fully accounted for in the mathematical 
model for the crosslinking density distribution15-19.) The 
onset of gelation for such systems must be assessed from 
the point of view of the largest eigenvalue of the transition 
matrix, Q, not by the value of PPwp. Obviously, how- 
ever, one needs to realize that other non-ideal effects such 
as cyclization reactions as well as the size and structural 
dependence of crosslinking reactions, which seem to have 
a formidable role in the context of a mean-field theory, 
are expected to be significant in non-linear free-radical 
polymerizations 28,29. 

MWD 

In this section, we consider more detailed statistical 
properties, i.e. the full MWD profiles. The analytical 
solution for the full MWD might be obtained for simpler 
cases by using the concept of the random sampling 
technique 2~23. However, for more realistic cases, one 
may need to resort to the Monte Carlo simulation 
technique. In the context of the random sampling 
technique, it is rather straightforward to construct a 
Monte Carlo simulation algorithm 1v-23 for any type of 
chain connection rule. With the Monte Carlo simula- 
tions, it is straightforward to account for the change in 
the transition probabilities, Pij, with the progress of 
crosslinking reactions. 

Suppose we have randomly selected one unit, as shown 
in Figure 1. With probability, wi, we would choose a 
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chain of type i. Therefore, we can determine the type 
of the selected chain by generating an equidistributed 
random number between 0 and 1 in Monte Carlo 
simulation. Because the selection is conducted on a 
weight basis, the chain length of the primary polymer 
molecule that contains this particular unit conforms to 
the weight fraction distribution of the primary polymer 
molecules of type i, Wp i(r). By generating a random 
number that follows Wp, i'(r), we can determine the chain 
length of the initially selected primary chain. 

Because the crosslinking density of chains of type i is 
pi, the number of crosslink points on this primary 
polymer molecule can be determined from the following 
binomial distribution, i.e. the probability that the primary 
chain of type i with chain length r possesses rn crosslink 
points is given by 

r m P(m) = ( m ) P i  (l - pi)r-m (46) 

Each crosslink point is connected to a chain of type j 
with the probability, Pij. Therefore, we can determine the 
types of the connected chains in the next generation. 
From the point of view of the connected chains, any unit 
within the chain can be connected with equal probability; 
therefore, the chain lengths of the primary chains follow 
the weight fraction distribution of the primary chains, 
Wp,j(r). 

By continuing the above procedures until no more 
primary chains are connected, we can determine the size 
and structure of one polymer molecule. By generating a 
large number of polymer molecules in this way, we can 
effectively determine the full MWD, as well as more 
detailed statistical properties, such as the radii of gyration 
and the fractal dimension of the formed polymer 
molecules 3°-32. 

Illustrative calculations 
The present Monte Carlo simulation can be applied 

for a system with any N-value. However, for simplicity, 
we show illustrative calculation results with N = 2, 
where both chain length distributions follow the most 
probable distribution: 

Wp, i(r ) : {r/(enp, i) 2} exp ( - r /Pnp ,  i) (47) 

where /3 , i  is the number-average chain length of type i 
chains, which is equal to [~np, i = Pwp, i/2 for the most 
probable distribution. 

As mentioned in the Introduction, Stockmayer 5'6 
considered the condensation of polymer chains in 
which AI,Az, . . . ,Ai , . . .  moles of the type A chains 
react with BI, B2,..., Bj,... moles of the type B chains. 
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Figure 7 Weight fraction distribution at the gel point. The bold curve 
shows the initial distribution with Pwp, 1 = 400, Pwp,2 = 4000 and 
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Figure 8 Fractional weight-based distribution containing k cross- 
linkages as well as the whole weight fraction distribution at the gel point 
under condition C 1 

He obtained an analytical solution, N{mi,nj} that 
represents the number of moles of species consisting of 
ml,m2,. . .  ,m;, . . .  chains of the type A combined with 
nl, n2,.. •, nj,.., chains of the type B. Note that, in order 
to obtain the number of polymer molecules with chain 
length r, one needs to consider all of the possible 
combinations to form polymer molecules with chain 
length r. His equation is useful for obtaining the average 
molecular weights through the use of appropriate 
generating functions; however, it is not practical to use 
his N{mi, nj} function to calculate the full MWD profiles 
directly, especially for primary chains with a broad 
MWD. As far as the authors know, this is the first 
attempt to show full MWD profiles even with N = 2 
where both types of chain are polydisperse and 
Pwp, l,Pwp,2 >> 1. 

We consider the cases where the weight-average chain 
lengths for types 1 and 2 are fiwp ] -- 400 and fiwp,2 = 
4000, respectively, and the weight 'fraction of chains of 
type 1 is Wl = 0.5. The primary chain length distribution 
is shown graphically in Figure 6. Here, we consider two 
types of connection rule: under condition C1, P]l = 
P22 = 0.5, and under condition C2, Pll =P22 = 0.1. 
Because wl = w2 = 0.5 in the present example, the 
crosslinking behaviour under condition C1 reduces to 
the case with a single type of chain, i.e. random crosslinking 
of polymer chains in which the Flory-Stockmayer 
theoryl a is applicable. Under condition C2, the cross- 
linking with the other type of chain is significant. 

From equations (7) and (21), gelation is predicted to 
occur at Pl = P2 = 4.545 x 10 -4 under condition C1, 
while the gel point for C2 is Pl = P2 = 7.286 x 10 -4. A 
larger crosslinking density is required under condition 
C2, because a larger number of smaller chains (type 1 
chains) are incorporated into the gel molecule due to a 
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Figure 9 Fractional weight-based distribution containing k cross- 
linkages as well as the whole weight fraction distribution at the gel point 
under condition C2 

greater tendency of  crosslinking between heterochains. 
Figure 7 shows the simulated weight fraction distribution 
at the gel point. The total of  4 x 104 polymer molecules 
are generated in the simulation for each condition. A 
larger number of  type 1 chains (smaller chains) are used 
for crosslinking reactions under condition C2 than 
under C1. 

The MW D of the crosslinked polymer molecules is 
the sum of  the fractional MWDs containing 0, 1, 2 , . . .  
crosslinkages. When the polymer molecules are fraction- 
ated by the number of  crosslinkages, one obtains the 
fractional MW D as shown in Figures 8 and 9. Figure 8 
shows the case under condition C1 at the gel point, while 
Figure 9 shows that for C2. In the figures, the k values 
indicate the number of  crosslinkages in a polymer 
molecule. Even at the gel point, a large amount of 
linear polymer molecules (k = 0) still remains for both 
cases. It is shown that the peak location of  the fractional 
M W D at the same k value is smaller for C2, i.e. a larger 
number of  crosslinkages is required to form larger-sized 
polymer molecules under condition C2 because of  a 
significant amount of heterochain crosslinking. The MWD 
profiles formed can vary significantly depending on the 
chain connection rule, even at the same weight-average 
molecular weight levels. 

CONCLUSIONS 

We have proposed a general theory for the statistical 
crosslinking of  heterochains. The weight averages of  the 
chain length and molecular weight distributions are 
given by Pw = E~=0WpQ nl and 2~' w = E~=0WpQnM1, 
respectively. The gel point can be determined only from 
the transition matrix, Q, i.e. gelation is predicted to occur 
when the largest eigenvalue of  Q reaches unity. The 
present theory clearly shows that the Flory-Stockmayer  
theory cannot be used for non-random crosslinking 
reactions. The onset of  gelation for such reaction systems 
must be assessed on the basis of  the largest eigenvalue of 
Q, not the value of  P#wp. 

For  the cases of  free-radical polymer grafting with two 
types of chain, the transition probabilities are given only 
by the product  of  the reactivity ratios; therefore, the 
weight-average chain length development is dominated 
by the product of  r lr : ,  not the individual terms of  rl and 
r2. The equations obtained for #w confirmed the validity 
of  the earlier results l°'n derived by using the method of  
moments. 

To obtain more detailed structural information such 
as the full MWD, it is straightforward to set up a Monte 

Carlo simulation algorithm on the basis of the random 
sampling technique. 
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GLOSSARY OF SYMBOLS 

gi Fraction of  the radical generation rate on 
chains of  type i 

k Number of  crosslinkages in a polymer molecule 
kq Bimolecular termination rate constant between 

radicals of type i and j 
Mi Molecular weight of  the monomeric unit of  

type i chain 
AIr w Weight-average molecular weight 
/3 w Weight-average chain length 
Pwp Weight-average chain length of  all primary 

chains 
Pwp, i Weight-average chain length of  the chains of 

type i 
Pij Transition probability that a crosslink point on 

a chain of  type i crosslinks a chain of  type j 
qij Elements of the transition matrix, Q = (qij) = 

(PiPqfiwp,j) 
r Chain length (degree of  polymerization) 
rt, r2 Reactivity ratios for the bimolecular termina- 

tion reactions, r I = kll /kl2 and r E = kE2/k12 
W(r) Weight fraction distribution 
Wp, i(r ) Weight fraction distribution of  the primary 

chains of type i 
wi Weight fraction of  polymer chains with type i 

Bold letters 
1 Column vector whose elements are all unity 
M Diagonal matrix whose elements are mii = Mi 
Q Transition matrix whose elements are given by 

qij = PiPijPwp,j 
Wp Row vector whose elements a r e  WiPwp ,i 

Greek letters 
p Average cross-linking density of the whole 

reaction mixture 
Pi Cross-linking density of chains of type i 
~b~ Number fraction of  the polymer radicals of 

type i 
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